Tony Finch im Jahr 2009 bietet eine Methode für einen exponentiellen gleitenden Durchschnitt und Standardabweichung: Die oben scheint basiert auf B. P. Welfords Online-Algorithmus für Standardabweichung, die auch den Mittelwert berechnet. Schiefe ist das Verhältnis des 3. Momentes und der Standardabweichung3 wie folgt: Das dritte Moment ist definiert als: Welches ist so ähnlich wie das zweite Moment oder die Varianz Also auf der Suche nach Tony Finchs Pseudocode würde ich sammeln, dass m3 wäre: Jedoch wenn Ich teste dies, die Schräge ist falsch. Output, bemerken, dass die Bevölkerung sd sind die gleichen, aber die Schräge ist weit davon entfernt. Irgendwelche Vorschläge, zum des Codes oben zu regeln Für den Test ließ ich den Alpha-Wert effektiv 1 / n für Testvalidierung. Ich suche John Cooks Online-Code hier und umgewandelt in R. Ich sehe nicht eine leicht durchgeführte Methode, um eine exponentielle Verschiebung durch die 1 / n in der endgültigen Schräg-Funktion zu konvertieren. Finch, Tony. (2009) Inkrementelle Berechnung des gewichteten Mittelwertes und der Varianz. Nfs-uxsup. csx. cam. ac. uk/ Ich versuche, den gleitenden Durchschnitt eines Signals zu berechnen. Der Signalwert (ein Doppel) wird zu beliebigen Zeiten aktualisiert. Ich bin auf der Suche nach einem effizienten Weg, um seine Zeit gewichteten Durchschnitt über ein Zeitfenster, in Echtzeit zu berechnen. Ich könnte es selbst tun, aber es ist schwieriger als ich dachte. Die meisten der Ressourcen Ive gefunden über das Internet berechnen gleitenden Durchschnitt des periodischen Signals, aber Mine Updates zu beliebigen Zeit. Kennt jemand gute Ressourcen für die Der Trick ist die folgende: Sie erhalten Updates zu beliebigen Zeiten über void update (int Zeit, float-Wert). Allerdings müssen Sie auch nachverfolgen, wenn ein Update fällt aus dem Zeitfenster, so dass Sie einen Alarm, der bei der Zeit N, die die vorherige Aktualisierung entfernt wird immer wieder in der Berechnung berücksichtigt. Wenn dies in Echtzeit geschieht, können Sie das Betriebssystem anfordern, einen Aufruf einer Methode void dropoffoldestupdate (int time) aufzurufen, die zum Zeitpunkt N aufgerufen werden soll. Wenn es sich um eine Simulation handelt, können Sie keine Hilfe vom Betriebssystem bekommen und müssen dies tun Tun Sie es manuell. In einer Simulation würden Sie Methoden mit der angegebenen Zeit als Argument aufrufen (was nicht mit der Echtzeit korreliert). Eine vernünftige Annahme ist jedoch, dass die Anrufe so gewartet werden, dass die Zeitargumente zunehmen. In diesem Fall müssen Sie eine sortierte Liste der Alarmzeitwerte pflegen und bei jedem Aktualisierungs - und Leseaufruf überprüfen, ob das Zeitargument größer ist als der Kopf der Alarmliste. Während es größer ist, tun Sie die alarmbezogene Verarbeitung (Drop off der ältesten Aktualisierung), entfernen Sie den Kopf und überprüfen Sie erneut, bis alle Alarme vor der angegebenen Zeit verarbeitet werden. Anschließend den Update-Aufruf durchführen. Ich habe bis jetzt angenommen, dass es offensichtlich ist, was Sie für die tatsächliche Berechnung tun würden, aber ich erarbeiten gerade für den Fall. Ich nehme an, Sie haben eine Methode float read (int Zeit), die Sie verwenden, um die Werte zu lesen. Das Ziel ist, diesen Anruf so effizient wie möglich zu machen. So berechnen Sie den gleitenden Durchschnitt nicht jedes Mal, wenn die Lesemethode aufgerufen wird. Stattdessen müssen Sie den Wert der letzten Aktualisierung oder des letzten Alarms vorberechnen und diesen Wert durch ein paar Gleitkommaoperationen anpassen, um die Zeit seit der letzten Aktualisierung zu berücksichtigen. (D. h. eine konstante Anzahl von Operationen, außer dass möglicherweise eine Liste von aufgestauten Alarmen verarbeitet wird). Hoffentlich ist dies klar - das sollte ein ganz einfacher Algorithmus und sehr effizient sein. Weitere Optimierung. Einer der verbleibenden Probleme ist, wenn eine große Anzahl von Updates innerhalb des Zeitfensters auftreten, dann gibt es eine lange Zeit, für die es weder liest noch Updates, und dann ein Lesen oder Update kommt entlang. In diesem Fall ist der obige Algorithmus ineffizient, wenn der Wert für jedes der Aktualisierungen, die herunterfallen, inkremental aktualisiert wird. Dies ist nicht notwendig, weil wir nur kümmern uns um die letzte Aktualisierung über das Zeitfenster so, wenn es einen Weg, um effizient drop off alle älteren Updates, würde es helfen. Um dies zu tun, können wir den Algorithmus ändern, um eine binäre Suche nach Updates durchzuführen, um das neueste Update vor dem Zeitfenster zu finden. Wenn es relativ wenige Updates gibt, die gelöscht werden müssen, kann man den Wert für jede heruntergelassene Aktualisierung inkremental aktualisieren. Aber, wenn es viele Updates gibt, die gelöscht werden müssen, dann kann man den Wert vom Kratzer neu berechnen, nachdem er weg von den alten Updates. Anhang auf Inkrementelle Berechnung: Ich sollte klären, was ich meine durch inkrementelle Berechnung oben in den Satz zwicken diesen Wert durch ein paar Gleitkomma-Operationen, um für den Ablauf der Zeit seit dem letzten Update. Initiale nicht-inkrementale Berechnung: dann über die relevanten Daten in der Reihenfolge der zunehmenden Zeit iterieren: movingaverage (sum lastupdate timesincelastupdate) / windowlength. Nun, wenn genau ein Update fällt aus dem Fenster, aber keine neuen Aktualisierungen ankommen, stellen Sie die Summe als: (beachten Sie, es ist Priorupdate, deren Timestamp geändert, um den Beginn der letzten Fenster beginnt). Und wenn genau ein Update in das Fenster eintritt, aber keine neuen Updates abfallen, passen Sie die Summe als an: Wie offensichtlich sein sollte, ist dies eine grobe Skizze, aber hoffentlich zeigt es, wie Sie den Durchschnitt so halten können, dass es O (1) Operationen pro Update ist Auf amortisierte Basis. Aber beachten Sie weitere Optimierung im vorherigen Absatz. Beachten Sie auch Stabilitätsprobleme, auf die in einer älteren Antwort hingewiesen wird, was bedeutet, dass Gleitkomma-Fehler über eine große Anzahl derartiger Inkrementierungsoperationen akkumulieren können, so dass es eine Abweichung von dem Ergebnis der Vollberechnung gibt, die für die Anwendung signifikant ist. Wenn eine Annäherung OK und theres eine minimale Zeit zwischen Proben ist, könnten Sie versuchen, Super-Sampling. Sie haben ein Array, das gleichmäßig beabstandete Zeitintervalle repräsentiert, die kürzer als das Minimum sind, und zu jedem Zeitpunkt die letzte empfangene Probe speichern. Je kürzer das Intervall, desto näher ist der Mittelwert auf den wahren Wert. Der Zeitraum sollte nicht größer als die Hälfte des Minimums sein, oder es besteht die Möglichkeit, eine Stichprobe zu fehlen. Antwortete Dec 15 11 at 18:12 antwortete 15 Dez, um 22:38 Uhr Danke für die Antwort. Eine Verbesserung, die erforderlich wäre, um tatsächlich Quotecachequot den Wert des Gesamtdurchschnitts, so dass wir don39t Schleife die ganze Zeit. Auch kann es ein kleiner Punkt sein, aber wäre es nicht effizienter, ein deque oder eine Liste zu verwenden, um den Wert zu speichern, da wir davon ausgehen, dass die Aktualisierung in der richtigen Reihenfolge kommen wird. Einfügen wäre schneller als in der Karte. Ndash Arthur Ja, Sie könnten den Wert der Summe zwischenspeichern. Subtrahieren Sie die Werte der Proben, die Sie löschen, fügen Sie die Werte der Proben, die Sie einfügen. Auch, ja, ein dequeltpairltSample, Dategtgt könnte effizienter sein. Ich wählte Karte für Lesbarkeit, und die Leichtigkeit der Aufruf der Karte :: upperbound. Wie immer, schreiben Sie den richtigen Code zuerst, dann Profil und messen inkrementelle Änderungen. Ndash Rob Dez 16 11 um 15:00 Hinweis: Anscheinend ist dies nicht der Weg, um dies zu nähern. Lassen Sie es hier als Referenz auf, was ist falsch mit diesem Ansatz. Überprüfen Sie die Kommentare. AKTUALISIERT - basierend auf Olis Kommentar. Nicht sicher über die Instabilität, dass er aber reden. Verwenden Sie eine sortierte Karte der Ankunftszeiten gegen Werte. Bei der Ankunft eines Wertes addieren Sie die Ankunftszeit zur sortierten Karte zusammen mit ihrem Wert und aktualisieren Sie den gleitenden Durchschnitt. Warnung dies ist Pseudocode: Dort. Nicht vollständig ausgefuellt, aber Sie bekommen die Idee. Dinge zu beachten. Wie ich schon sagte ist Pseudocode. Youll Notwendigkeit, eine passende Karte zu wählen. Entfernen Sie nicht die Paare, während Sie iterieren, indem Sie den Iterator ungültig machen und müssen wieder neu starten. Siehe Olis Kommentar unten auch. Antwort # 2 am: Dezember 15, 2010, um 12:22 Uhr Dies doesn39t Arbeit: es doesn39t berücksichtigen, welcher Anteil der Fensterlänge jeder Wert für vorhanden ist. Auch dieser Ansatz der Addition und dann Subtraktion ist nur stabil für Ganzzahl-Typen, nicht Floaten. Ndash Oliver Charlesworth OliCharlesworth - sorry Ich habe einige wichtige Punkte in der Beschreibung (doppelt und zeitgewichtet) verpasst. Ich werde aktualisieren. Vielen Dank. Ndash Dennis Dec 15 11 at 12:33 Die Zeitgewichtung ist ein weiteres Problem. Aber das ist nicht das, worüber ich rede. Ich bezog sich auf die Tatsache, dass, wenn ein neuer Wert zuerst das Zeitfenster betritt, sein Beitrag zum Durchschnitt minimal ist. Ihr Beitrag steigt, bis ein neuer Wert eintritt. Ndash Oliver Charlesworth Ich versuche, den gleitenden Durchschnitt eines Signals zu berechnen. Der Signalwert (ein Doppel) wird zu beliebigen Zeiten aktualisiert. Ich bin auf der Suche nach einem effizienten Weg, um seine Zeit gewichteten Durchschnitt über ein Zeitfenster, in Echtzeit zu berechnen. Ich könnte es selbst tun, aber es ist schwieriger als ich dachte. Die meisten der Ressourcen Ive gefunden über das Internet berechnen gleitenden Durchschnitt des periodischen Signals, aber Mine Updates zu beliebigen Zeit. Kennt jemand gute Ressourcen für die Der Trick ist die folgende: Sie erhalten Updates zu beliebigen Zeiten über void update (int Zeit, float-Wert). Allerdings müssen Sie auch nachverfolgen, wenn ein Update fällt aus dem Zeitfenster, so dass Sie einen Alarm, der bei der Zeit N, die die vorherige Aktualisierung entfernt wird immer wieder in der Berechnung berücksichtigt. Wenn dies in Echtzeit geschieht, können Sie das Betriebssystem anfordern, einen Aufruf einer Methode void dropoffoldestupdate (int time) aufzurufen, die zum Zeitpunkt N aufgerufen werden soll. Wenn es sich um eine Simulation handelt, können Sie keine Hilfe vom Betriebssystem bekommen und müssen dies tun Tun Sie es manuell. In einer Simulation würden Sie Methoden mit der angegebenen Zeit als Argument aufrufen (was nicht mit der Echtzeit korreliert). Eine vernünftige Annahme ist jedoch, dass die Anrufe so gewartet werden, dass die Zeitargumente zunehmen. In diesem Fall müssen Sie eine sortierte Liste der Alarmzeitwerte pflegen und bei jedem Aktualisierungs - und Leseaufruf überprüfen, ob das Zeitargument größer ist als der Kopf der Alarmliste. Während es größer ist, tun Sie die alarmbezogene Verarbeitung (Drop off der ältesten Aktualisierung), entfernen Sie den Kopf und überprüfen Sie erneut, bis alle Alarme vor der angegebenen Zeit verarbeitet werden. Anschließend den Update-Aufruf durchführen. Ich habe bis jetzt angenommen, dass es offensichtlich ist, was Sie für die tatsächliche Berechnung tun würden, aber ich erarbeiten gerade für den Fall. Ich nehme an, Sie haben eine Methode float read (int Zeit), die Sie verwenden, um die Werte zu lesen. Das Ziel ist, diesen Anruf so effizient wie möglich zu machen. So berechnen Sie den gleitenden Durchschnitt nicht jedes Mal, wenn die Lesemethode aufgerufen wird. Stattdessen müssen Sie den Wert der letzten Aktualisierung oder des letzten Alarms vorberechnen und diesen Wert durch ein paar Gleitkommaoperationen anpassen, um die Zeit seit der letzten Aktualisierung zu berücksichtigen. (D. h. eine konstante Anzahl von Operationen, außer dass möglicherweise eine Liste von aufgestauten Alarmen verarbeitet wird). Hoffentlich ist dies klar - das sollte ein ganz einfacher Algorithmus und sehr effizient sein. Weitere Optimierung. Einer der verbleibenden Probleme ist, wenn eine große Anzahl von Updates innerhalb des Zeitfensters auftreten, dann gibt es eine lange Zeit, für die es weder liest noch Updates, und dann ein Lesen oder Update kommt entlang. In diesem Fall ist der obige Algorithmus ineffizient, wenn der Wert für jedes der Aktualisierungen, die herunterfallen, inkremental aktualisiert wird. Dies ist nicht notwendig, weil wir nur kümmern uns um die letzte Aktualisierung über das Zeitfenster so, wenn es einen Weg, um effizient drop off alle älteren Updates, würde es helfen. Um dies zu tun, können wir den Algorithmus ändern, um eine binäre Suche nach Updates durchzuführen, um das neueste Update vor dem Zeitfenster zu finden. Wenn es relativ wenige Updates gibt, die gelöscht werden müssen, kann man den Wert für jede heruntergelassene Aktualisierung inkremental aktualisieren. Aber, wenn es viele Updates gibt, die gelöscht werden müssen, dann kann man den Wert vom Kratzer neu berechnen, nachdem er weg von den alten Updates. Anhang auf Inkrementelle Berechnung: Ich sollte klären, was ich meine durch inkrementelle Berechnung oben in den Satz zwicken diesen Wert durch ein paar Gleitkomma-Operationen, um für den Ablauf der Zeit seit dem letzten Update. Initiale nicht-inkrementale Berechnung: dann über die relevanten Daten in der Reihenfolge der zunehmenden Zeit iterieren: movingaverage (sum lastupdate timesincelastupdate) / windowlength. Nun, wenn genau ein Update fällt aus dem Fenster, aber keine neuen Aktualisierungen ankommen, stellen Sie die Summe als: (beachten Sie, es ist Priorupdate, deren Timestamp geändert, um den Beginn der letzten Fenster beginnt). Und wenn genau ein Update in das Fenster eintritt, aber keine neuen Updates abfallen, passen Sie die Summe als an: Wie offensichtlich sein sollte, ist dies eine grobe Skizze, aber hoffentlich zeigt es, wie Sie den Durchschnitt so halten können, dass es O (1) Operationen pro Update ist Auf amortisierte Basis. Aber beachten Sie weitere Optimierung im vorherigen Absatz. Beachten Sie auch Stabilitätsprobleme, auf die in einer älteren Antwort hingewiesen wird, was bedeutet, dass Gleitkomma-Fehler über eine große Anzahl derartiger Inkrementierungsoperationen akkumulieren können, so dass es eine Abweichung von dem Ergebnis der Vollberechnung gibt, die für die Anwendung signifikant ist. Wenn eine Annäherung OK und theres eine minimale Zeit zwischen Proben ist, könnten Sie versuchen, Super-Sampling. Sie haben ein Array, das gleichmäßig beabstandete Zeitintervalle repräsentiert, die kürzer als das Minimum sind, und zu jedem Zeitpunkt die letzte empfangene Probe speichern. Je kürzer das Intervall, desto näher ist der Mittelwert auf den wahren Wert. Der Zeitraum sollte nicht größer als die Hälfte des Minimums sein, oder es besteht die Möglichkeit, eine Stichprobe zu fehlen. Antwortete Dec 15 11 at 18:12 antwortete 15 Dez, um 22:38 Uhr Danke für die Antwort. Eine Verbesserung, die erforderlich wäre, um tatsächlich Quotecachequot den Wert des Gesamtdurchschnitts, so dass wir don39t Schleife die ganze Zeit. Auch kann es ein kleiner Punkt sein, aber wäre es nicht effizienter, ein deque oder eine Liste zu verwenden, um den Wert zu speichern, da wir davon ausgehen, dass die Aktualisierung in der richtigen Reihenfolge kommen wird. Einfügen wäre schneller als in der Karte. Ndash Arthur Ja, Sie könnten den Wert der Summe zwischenspeichern. Subtrahieren Sie die Werte der Proben, die Sie löschen, fügen Sie die Werte der Proben, die Sie einfügen. Auch, ja, ein dequeltpairltSample, Dategtgt könnte effizienter sein. Ich wählte Karte für Lesbarkeit, und die Leichtigkeit der Aufruf der Karte :: upperbound. Wie immer, schreiben Sie den richtigen Code zuerst, dann Profil und messen inkrementelle Änderungen. Ndash Rob Dez 16 11 um 15:00 Hinweis: Anscheinend ist dies nicht der Weg, um dies zu nähern. Lassen Sie es hier als Referenz auf, was ist falsch mit diesem Ansatz. Überprüfen Sie die Kommentare. AKTUALISIERT - basierend auf Olis Kommentar. Nicht sicher über die Instabilität, dass er aber reden. Verwenden Sie eine sortierte Karte der Ankunftszeiten gegen Werte. Bei der Ankunft eines Wertes addieren Sie die Ankunftszeit zur sortierten Karte zusammen mit ihrem Wert und aktualisieren Sie den gleitenden Durchschnitt. Warnung dies ist Pseudocode: Dort. Nicht vollständig ausgefuellt, aber Sie bekommen die Idee. Dinge zu beachten. Wie ich schon sagte ist Pseudocode. Youll Notwendigkeit, eine passende Karte zu wählen. Entfernen Sie nicht die Paare, während Sie iterieren, indem Sie den Iterator ungültig machen und müssen wieder neu starten. Siehe Olis Kommentar unten auch. Antwort # 2 am: Dezember 15, 2010, um 12:22 Uhr Dies doesn39t Arbeit: es doesn39t berücksichtigen, welcher Anteil der Fensterlänge jeder Wert für vorhanden ist. Auch dieser Ansatz der Addition und dann Subtraktion ist nur stabil für Ganzzahl-Typen, nicht Floaten. Ndash Oliver Charlesworth OliCharlesworth - sorry Ich habe einige wichtige Punkte in der Beschreibung (doppelt und zeitgewichtet) verpasst. Ich werde aktualisieren. Vielen Dank. Ndash Dennis Dec 15 11 at 12:33 Die Zeitgewichtung ist ein weiteres Problem. Aber das ist nicht das, worüber ich rede. Ich bezog sich auf die Tatsache, dass, wenn ein neuer Wert zuerst das Zeitfenster betritt, sein Beitrag zum Durchschnitt minimal ist. Ihr Beitrag steigt, bis ein neuer Wert eintritt. Ndash Oliver Charlesworth Ich bin nicht sicher, der richtigen Lösung aber seit Summierung der Durchschnitt jeder Probe würde eine angemessene Menge von Rundungsfehler führen. Hmm Ich frage mich, wenn die Trennung der gebrochenen Teil aus dem ganzen Teil helfen würde. Teilen Sie den ganzen Teil jeder Zahl durch den Zähler. Halten Sie drei laufende Summen: 1) der Durchschnitt der ganzen Teile, 2) der Rest von jeder Division und 3) der Bruchteil einer jeden Zahl. Jedes Mal, wenn der ganze Teil einer Zahl geteilt wird, wird das gesamte Teilergebnis zu der durchschnittlichen laufenden Summe addiert, und der Rest wird zu der verbleibenden laufenden Summe addiert. Wenn die verbleibende laufende Summe einen Wert erhält, der größer oder gleich dem Zählwert ist, wird sein dividiert durch die Zählung mit dem gesamten Teilergebnis zu der durchschnittlichen laufenden Summe addiert, und der Rest wird zu der restlichen laufenden Summe addiert. Auch wird bei jeder Berechnung der Bruchteil zur Bruchlaufsumme addiert. Wenn die Mittelung beendet ist, wird die verbleibende laufende Summe durch die Zählung geteilt, und das Ergebnis wird der durchschnittlichen laufenden Summe als eine fließende Zahl hinzugefügt. Zum Beispiel: Nun, was mit der fraktionalen laufenden Summe zu tun. Die Gefahr des Überlaufs ist hier viel weniger wahrscheinlich, obwohl es immer noch möglich ist, so dass man damit umgehen würde, wäre es, die gebrochene laufende Summe durch den Zähler am Ende zu teilen und es zu unserem Ergebnis hinzuzufügen: Eine Alternative wäre, den fraktionalen Betrieb zu überprüfen Summe bei jeder Berechnung, um zu sehen, ob sie größer oder gleich count ist. Wenn das passiert, tun Sie einfach das Gleiche, was wir mit der restlichen Summe machen. Ausgezeichnet Jomit Vaghela 6-Mar-07 20:00 Ich mochte, was Sie sagten, dass kleine Jobs schnell zu großen Jobs werden. Denken an Optimierung während Codierung ist eine gute Praxis. Große Anstrengung und Erklärung, Renko automatisierte Handel mit gleitenden Durchschnitt auf Leuchter Chart Diese automatisierte Trading-Strategie basiert auf Pseudo-Renko-Diagramm auf normalen Leuchtern ein gebaut. Ursprünglich auf Anfrage auf französischen Foren codiert, verwendet diese Strategie eine Kombination des renko auf Chartindikator hier verfügbar. Www. prorealcode / prorealtime-indicators / renko-boxes-on-price-chart / und ein gleitender Durchschnitt, der am Ende jedes Renkobaus gebaut wurde. Die Strategie besteht aus einem einfachen Crossover des renko close und dem gleitenden Durchschnitt. Dieser Code scheint gut auf DAX auf einem 15 Minuten Zeitrahmen zu funktionieren. Ich weiß, Renko nicht mit der Zeit umgehen, aber mein einfacher Test zeigt, dass Bedingungen, die nur ein Mal pro Bar getestet werden, geben gute Ergebnisse auf diesen Zeitrahmen. Ich habe nicht viel Test auf jedem anderen Instrument oder anderen Zeitrahmen though. Aber es wäre sicherlich mit jedem anderen profitabel, da es nur 2 Parameter zu setzen. Die Ziegelgröße (20 Punkte Standardgröße) und die gleitende durchschnittliche Periode (20 Perioden per Voreinstellung), die sehr häufig sind und möglicherweise nicht so kurvenangepasst sind. Der Test wurde mit einer 1-Punkt-Ausbreitung durchgeführt. Keine Informationen auf dieser Website sind Anlageberatung oder eine Aufforderung zum Kauf oder Verkauf von Finanzinstrumenten. Die Wertentwicklung in der Vergangenheit ist kein Hinweis auf zukünftige Ergebnisse. Der Handel kann Sie einem Verlustrisiko aussetzen, das größer ist als Ihre Einlagen und nur für erfahrene Anleger geeignet ist, die über ausreichende finanzielle Mittel verfügen, um dieses Risiko zu tragen. ProRealTime ITF-Dateien und andere Anlagen: Neue PRC ist jetzt auch auf YouTube, abonnieren Sie unseren Kanal für exklusive Inhalte und Tutorials Nice Code. Ich wollte nur mein eigenes Renko-System machen, denn ich denke, Renko ist auf lange Sicht wirklich rentabel. Meine manuellen Backtests auf Renko zeigen sehr rentable Tests mit akzeptabler Drawdown, aber ich haven8217t testen ausreichende Daten. Ich habe meine eigenen Handelsregeln für Renko, vielleicht werde ich Post meinen eigenen Code, wenn ich es schaffen. Viele Grüße, Danke. Grafische Darstellungen, die sich nur auf den Preis und nicht auf die Zeit beziehen, sind immer genauer (renko, range, tick bars). Ich ermutige Ihre Forschung auf diese Weise Dieses System ist nur ein einfacher Preis über gleitenden Durchschnitt. Die Art, wie ich die gleitende Durchschnittsberechnung geändert habe, um nicht Zeit in Erwägung zu ziehen, würde an irgendwelche anderen Indikatoren angepasst werden, wie Supertrend, RSI und so weiter .. am besten Equity Kurve in der Website. Und mit Verbreitung enthalten 8230 .. Nicolas. Ich denke, es wäre das gleiche wie in Echtzeit-Trading, es nicht jede Art von takeprofit, Stoploss oder schleppenden Stop, nur stoppen und umzukehren Bestellungen und Handel Öffnen und schließen kann nicht in der gleichen Kerze sein. Das Schlimmste, was in dieser Strategie ist, dass Sie immer auf dem Markt sind und Sie haben mit Übernachtgebühren, die nicht enthalten sind. Verbreitung ist auch am Abend auf DAX größer. Aber diese Strategie wurde durch Antrag auf Forum gemacht, ich sah, dass es gute Resultate gab, also hier ist es. DAX war das geöffnete Chart, wenn ich diese Strategie codierte, kann jeder es mit jedem anderen Instrument mit verschiedenen Ziegel Größe und gleitende durchschnittliche Periode testen, kann es sicherlich geben einen Vorteil auf feine Eigenkapital an anderer Stelle oder Teil eines automatisierten Trading-Strategien-Portfolio sein.
No comments:
Post a Comment