Eine Zeitreihe ist eine Folge von Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussströme für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell an, indem es eine lineare Gleichung entwickelt, die die kleinsten Quadrate für die letzten m Beobachtungen bietet. Spreadsheet-Implementierung der saisonalen Anpassung und exponentieller Glättung Es ist einfach, saisonale Anpassung durchzuführen und exponentielle Glättungsmodelle mit Excel anzupassen. Die unten aufgeführten Bildschirmbilder und Diagramme werden einer Tabellenkalkulation entnommen, die eine multiplikative saisonale Anpassung und eine lineare Exponentialglättung für die folgenden vierteljährlichen Verkaufsdaten von Outboard Marine darstellt: Um eine Kopie der Tabellenkalkulation selbst zu erhalten, klicken Sie hier. Die Version der linearen exponentiellen Glättung, die hier für Demonstrationszwecke verwendet wird, ist die Brown8217s-Version, nur weil sie mit einer einzigen Spalte von Formeln implementiert werden kann und es nur eine Glättungskonstante gibt, die optimiert werden soll. In der Regel ist es besser, Holt8217s Version, die separate Glättungskonstanten für Ebene und Trend hat. Der Prognoseprozess verläuft wie folgt: (i) Die Daten werden saisonbereinigt (ii) sodann für die saisonbereinigten Daten über lineare exponentielle Glättung Prognosen erstellt und (iii) schließlich werden die saisonbereinigten Prognosen zur Erzielung von Prognosen für die ursprüngliche Serie herangezogen . Der saisonale Anpassungsprozess wird in den Spalten D bis G durchgeführt. Der erste Schritt in der Saisonbereinigung besteht darin, einen zentrierten gleitenden Durchschnitt (hier in Spalte D) zu berechnen. Dies kann erreicht werden, indem der Durchschnitt von zwei einjährigen Durchschnittswerten, die um eine Periode relativ zueinander versetzt sind, genommen wird. (Eine Kombination von zwei Offset-Durchschnittswerten anstatt eines einzigen Mittels wird für die Zentrierung benötigt, wenn die Anzahl der Jahreszeiten gleich ist.) Der nächste Schritt besteht darin, das Verhältnis zum gleitenden Durchschnitt zu berechnen. Wobei die ursprünglichen Daten durch den gleitenden Durchschnitt in jeder Periode dividiert werden - was hier in Spalte E durchgeführt wird. (Dies wird auch Quottrend-Cyclequot-Komponente des Musters genannt, sofern Trend - und Konjunktur-Effekte als all dies betrachtet werden können Bleibt nach einer Durchschnittsberechnung über ein ganzes Jahr im Wert von Daten bestehen. Natürlich können die monatlichen Veränderungen, die nicht saisonal bedingt sind, durch viele andere Faktoren bestimmt werden, aber der 12-Monatsdurchschnitt glättet sie weitgehend Wird der geschätzte saisonale Index für jede Jahreszeit berechnet, indem zuerst alle Verhältnisse für die jeweilige Jahreszeit gemittelt werden, was in den Zellen G3-G6 unter Verwendung einer AVERAGEIF-Formel erfolgt. Die Durchschnittsverhältnisse werden dann neu skaliert, so daß sie auf das genau 100-fache der Anzahl der Perioden in einer Jahreszeit, oder 400 in diesem Fall, das in den Zellen H3-H6 erfolgt, summieren. Unten in der Spalte F werden VLOOKUP-Formeln verwendet, um den entsprechenden saisonalen Indexwert in jede Zeile der Datentabelle einzufügen, entsprechend dem Viertel des Jahres, das es repräsentiert. Der zentrierte gleitende Durchschnitt und die saisonbereinigten Daten enden wie folgt: Beachten Sie, dass der gleitende Durchschnitt typischerweise wie eine glattere Version der saisonbereinigten Serie aussieht und an beiden Enden kürzer ist. Ein weiteres Arbeitsblatt in derselben Excel-Datei zeigt die Anwendung des linearen exponentiellen Glättungsmodells auf die saisonbereinigten Daten beginnend in Spalte G. Über der Prognosespalte (hier in Zelle H9) wird ein Wert für die Glättungskonstante (alpha) eingetragen Zur Vereinfachung wird ihm der Bereichsname quotAlpha. quot zugewiesen (Der Name wird mit dem Befehl quotInsert / Name / Createquot zugewiesen.) Das LES-Modell wird initialisiert, indem die ersten beiden Prognosen gleich dem ersten Istwert der saisonbereinigten Serie gesetzt werden. Die hier verwendete Formel für die LES-Prognose ist die rekursive Einzelformel des Brown8217s-Modells: Diese Formel wird in der Zelle entsprechend der dritten Periode (hier Zelle H15) eingegeben und von dort nach unten kopiert. Beachten Sie, dass sich die LES-Prognose für den aktuellen Zeitraum auf die beiden vorherigen Beobachtungen und die beiden vorherigen Prognosefehler sowie auf den Wert von alpha bezieht. Somit bezieht sich die Prognoseformel in Zeile 15 nur auf Daten, die in Zeile 14 und früher verfügbar waren. (Natürlich könnten wir statt der linearen exponentiellen Glättung einfach statt der linearen exponentiellen Glättung verwenden, könnten wir stattdessen die SES-Formel ersetzen. Wir könnten auch Holt8217s anstelle von Brown8217s LES-Modell verwenden, was zwei weitere Spalten von Formeln erfordern würde, um das Niveau und den Trend zu berechnen Die in der Prognose verwendet werden.) Die Fehler werden in der nächsten Spalte (hier Spalte J) durch Subtrahieren der Prognosen von den Istwerten berechnet. Der Quadratwurzel-Quadratfehler wird als Quadratwurzel der Varianz der Fehler plus dem Quadrat des Mittelwerts berechnet. (Dies ergibt sich aus der mathematischen Identität: MSE VARIANCE (Fehler) (AVERAGE (Fehler)) 2.) Bei der Berechnung des Mittelwertes und der Varianz der Fehler in dieser Formel sind die ersten beiden Perioden ausgeschlossen, weil das Modell nicht tatsächlich mit der Prognose beginnt Die dritte Periode (Zeile 15 auf der Kalkulationstabelle). Der optimale Wert von alpha kann entweder durch manuelles Ändern von alpha gefunden werden, bis das minimale RMSE gefunden wird, oder Sie können das quotSolverquot verwenden, um eine genaue Minimierung durchzuführen. Der Wert von alpha, den der Solver gefunden hat, wird hier angezeigt (alpha0.471). Es ist in der Regel eine gute Idee, die Fehler des Modells (in transformierten Einheiten) zu zeichnen und ihre Autokorrelationen zu berechnen und zu zeichnen, bis zu einer Saison. Hier ist eine Zeitreihenfolge der (saisonbereinigten) Fehler: Die Fehlerautokorrelationen werden mit Hilfe der CORREL () - Funktion berechnet, um die Korrelationen der Fehler selbst mit einer oder mehreren Perioden zu berechnen - Einzelheiten sind im Kalkulationsblatt dargestellt . Hier ist ein Diagramm der Autokorrelationen der Fehler bei den ersten fünf Verzögerungen: Die Autokorrelationen bei den Verzögerungen 1 bis 3 sind sehr nahe bei Null, aber die Spitze bei Verzögerung 4 (deren Wert 0,35 ist) ist etwas mühsam Saisonale Anpassungsprozess nicht vollständig erfolgreich war. Allerdings ist es eigentlich nur marginal signifikant. 95 Signifikanzbanden zum Testen, ob Autokorrelationen signifikant von Null verschieden sind, sind etwa plus-oder-minus 2 / SQRT (n-k), wobei n die Stichprobengröße und k die Verzögerung ist. Hier ist n gleich 38 und k variiert von 1 bis 5, so daß die Quadratwurzel von - n-minus-k für alle von etwa 6 ist, und daher sind die Grenzen für das Testen der statistischen Signifikanz von Abweichungen von Null grob plus - Oder-minus 2/6 oder 0,33. Wenn Sie den Wert von alpha von Hand in diesem Excel-Modell variieren, können Sie den Effekt auf die Zeitreihen und Autokorrelationsdiagramme der Fehler sowie auf den Root-mean-squared-Fehler beobachten, der nachfolgend erläutert wird. Am Ende der Kalkulationstabelle wird die Prognoseformel quasi in die Zukunft gestartet, indem lediglich Prognosen für tatsächliche Werte an dem Punkt ausgetauscht werden, an dem die tatsächlichen Daten ablaufen - d. h. Wo die Zukunft beginnt. (Mit anderen Worten, in jeder Zelle, in der ein zukünftiger Datenwert auftreten würde, wird eine Zellreferenz eingefügt, die auf die Prognose für diese Periode hinweist.) Alle anderen Formeln werden einfach von oben nach unten kopiert: Beachten Sie, dass die Fehler für die Prognosen von Die Zukunft werden alle berechnet, um Null zu sein. Dies bedeutet nicht, dass die tatsächlichen Fehler null sein werden, sondern lediglich die Tatsache, dass wir für die Vorhersage davon ausgehen, dass die zukünftigen Daten den Prognosen im Durchschnitt entsprechen werden. Die daraus resultierenden LES-Prognosen für die saisonbereinigten Daten sehen wie folgt aus: Mit diesem für a-Periodenprognosen optimalen Wert von alpha ist der prognostizierte Trend leicht nach oben, was auf den lokalen Trend in den letzten 2 Jahren zurückzuführen ist oder so. Für andere Werte von alpha könnte eine sehr unterschiedliche Trendprojektion erhalten werden. Es ist normalerweise eine gute Idee, zu sehen, was mit der langfristigen Trendprojektion geschieht, wenn Alpha variiert wird, weil der Wert, der für kurzfristige Prognosen am besten ist, nicht notwendigerweise der beste Wert für die Vorhersage der weiter entfernten Zukunft sein wird. Dies ist beispielsweise das Ergebnis, das erhalten wird, wenn der Wert von alpha manuell auf 0,25 gesetzt wird: Der projizierte Langzeittrend ist jetzt eher negativ als positiv Mit einem kleineren Wert von alpha setzt das Modell mehr Gewicht auf ältere Daten Seine Einschätzung des aktuellen Niveaus und Tendenz und seine langfristigen Prognosen spiegeln den in den letzten 5 Jahren beobachteten Abwärtstrend anstatt den jüngsten Aufwärtstrend wider. Dieses Diagramm zeigt auch deutlich, wie das Modell mit einem kleineren Wert von alpha langsamer ist, um auf quotturning pointsquot in den Daten zu antworten und daher tendiert, einen Fehler des gleichen Vorzeichens für viele Perioden in einer Reihe zu machen. Die Prognosefehler von 1-Schritt-Vorhersage sind im Mittel größer als die, die zuvor erhalten wurden (RMSE von 34,4 statt 27,4) und stark positiv autokorreliert. Die Lag-1-Autokorrelation von 0,56 übersteigt den oben berechneten Wert von 0,33 für eine statistisch signifikante Abweichung von Null deutlich. Als Alternative zum Abkürzen des Wertes von Alpha, um mehr Konservatismus in Langzeitprognosen einzuführen, wird manchmal ein Quottrend-Dämpfungsquotfaktor dem Modell hinzugefügt, um die projizierte Tendenz nach einigen Perioden abflachen zu lassen. Der letzte Schritt beim Erstellen des Prognosemodells besteht darin, die LES-Prognosen durch Multiplikation mit den entsprechenden saisonalen Indizes zu veranschaulichen. Somit sind die reseasonalisierten Prognosen in Spalte I einfach das Produkt der saisonalen Indizes in Spalte F und der saisonbereinigten LES-Prognosen in Spalte H. Es ist relativ einfach, Konfidenzintervalle für einstufige Prognosen dieses Modells zu berechnen: Erstens Berechnen Sie den RMSE (root-mean-squared Fehler, der nur die Quadratwurzel der MSE ist) und berechnen Sie dann ein Konfidenzintervall für die saisonbereinigte Prognose durch Addition und Subtraktion zweimal des RMSE. (Im Allgemeinen ist ein 95-Konfidenzintervall für eine Ein-Perioden-Vorausprognose ungefähr gleich der Punktvorhersage plus-oder-minus-zweimal der geschätzten Standardabweichung der Prognosefehler, vorausgesetzt, die Fehlerverteilung ist annähernd normal und die Stichprobengröße Ist groß genug, sagen wir, 20 oder mehr Hier ist die RMSE anstelle der Standardabweichung der Fehler die beste Schätzung der Standardabweichung der zukünftigen Prognosefehler, weil sie auch die Zufallsvariationen berücksichtigt.) Die Vertrauensgrenzen Für die saisonbereinigte Prognose werden dann reseasonalisiert. Zusammen mit der Prognose, durch Multiplikation mit den entsprechenden saisonalen Indizes. In diesem Fall ist die RMSE gleich 27,4 und die saisonbereinigte Prognose für die erste künftige Periode (Dez-93) beträgt 273,2. So dass das saisonbereinigte 95-Konfidenzintervall von 273,2-227,4 218,4 auf 273,2227,4 328,0 liegt. Das Multiplizieren dieser Limits durch Decembers saisonalen Index von 68,61. Erhalten wir niedrigere und obere Konfidenzgrenzen von 149,8 und 225,0 um die Dez-93-Punktprognose von 187,4. Die Vertrauensgrenzen für Prognosen, die länger als eine Periode vorangehen, werden sich in der Regel aufgrund der Unsicherheit über das Niveau und den Trend sowie die saisonalen Faktoren erweitern, da der Prognosehorizont zunimmt, aber es ist schwierig, diese im Allgemeinen nach analytischen Methoden zu berechnen. (Die geeignete Methode zur Berechnung der Vertrauensgrenzen für die LES-Prognose ist die Verwendung der ARIMA-Theorie, aber die Unsicherheit in den saisonalen Indizes ist eine andere Angelegenheit.) Wenn Sie ein realistisches Konfidenzintervall für eine Prognose über mehrere Zeiträume wünschen, Fehler zu berücksichtigen, ist Ihre beste Wette, empirische Methoden zu verwenden: Zum Beispiel, um ein Vertrauensintervall für eine 2-Schritt-Vorausprognose zu erhalten, könnten Sie eine weitere Spalte auf dem Kalkulationsblatt erstellen, um eine 2-Schritt-Vorausprognose für jeden Zeitraum zu berechnen ( Durch Booten der Ein-Schritt-Voraus-Prognose). Dann berechnen Sie die RMSE der 2-Step-Ahead-Prognose Fehler und verwenden Sie diese als Grundlage für ein 2-Schritt-Ahead-Konfidenzintervall. Moving-Mittelungen - Einfache und Exponential Moving Averages - Einfache und exponentielle Einführung Moving-Mittelwerte glatt die Preisdaten zu bilden Ein Trendfolger. Sie prognostizieren nicht die Kursrichtung, sondern definieren die aktuelle Richtung mit einer Verzögerung. Moving Averages Lag, weil sie auf vergangenen Preisen basieren. Trotz dieser Verzögerung, gleitende Durchschnitte helfen, glatte Preis-Aktion und Filter aus dem Lärm. Sie bilden auch die Bausteine für viele andere technische Indikatoren und Overlays, wie Bollinger Bands. MACD und dem McClellan-Oszillator. Die beiden beliebtesten Arten von gleitenden Durchschnitten sind die Simple Moving Average (SMA) und die Exponential Moving Average (EMA). Diese Bewegungsdurchschnitte können verwendet werden, um die Richtung des Trends zu identifizieren oder potentielle Unterstützungs - und Widerstandswerte zu definieren. Here039s ein Diagramm mit einem SMA und einem EMA auf ihm: Einfache gleitende durchschnittliche Berechnung Ein einfacher gleitender Durchschnitt wird gebildet, indem man den durchschnittlichen Preis eines Wertpapiers über einer bestimmten Anzahl von Perioden berechnet. Die meisten gleitenden Mittelwerte basieren auf den Schlusskursen. Ein 5-tägiger einfacher gleitender Durchschnitt ist die fünftägige Summe der Schlusskurse geteilt durch fünf. Wie der Name schon sagt, ist ein gleitender Durchschnitt ein Durchschnitt, der sich bewegt. Alte Daten werden gelöscht, wenn neue Daten verfügbar sind. Dies bewirkt, dass sich der Durchschnitt entlang der Zeitskala bewegt. Unten ist ein Beispiel für einen 5-tägigen gleitenden Durchschnitt, der sich über drei Tage entwickelt. Der erste Tag des gleitenden Durchschnitts deckt nur die letzten fünf Tage ab. Der zweite Tag des gleitenden Mittelwerts fällt den ersten Datenpunkt (11) und fügt den neuen Datenpunkt (16) hinzu. Der dritte Tag des gleitenden Durchschnitts setzt sich fort, indem der erste Datenpunkt (12) abfällt und der neue Datenpunkt (17) addiert wird. Im obigen Beispiel steigen die Preise allmählich von 11 auf 17 über insgesamt sieben Tage. Beachten Sie, dass der gleitende Durchschnitt auch von 13 auf 15 über einen dreitägigen Berechnungszeitraum steigt. Beachten Sie auch, dass jeder gleitende Durchschnittswert knapp unter dem letzten Kurs liegt. Zum Beispiel ist der gleitende Durchschnitt für Tag eins gleich 13 und der letzte Preis ist 15. Preise der vorherigen vier Tage waren niedriger und dies führt dazu, dass der gleitende Durchschnitt zu verzögern. Exponentielle gleitende Durchschnittsberechnung Exponentielle gleitende Mittelwerte reduzieren die Verzögerung, indem mehr Gewicht auf die jüngsten Preise angewendet wird. Die Gewichtung des jüngsten Preises hängt von der Anzahl der Perioden im gleitenden Durchschnitt ab. Es gibt drei Schritte, um einen exponentiellen gleitenden Durchschnitt zu berechnen. Berechnen Sie zunächst den einfachen gleitenden Durchschnitt. Ein exponentieller gleitender Durchschnitt (EMA) muss irgendwo anfangen, so dass ein einfacher gleitender Durchschnitt als die vorherige Periode039s EMA in der ersten Berechnung verwendet wird. Zweitens, berechnen Sie die Gewichtung Multiplikator. Drittens berechnen Sie den exponentiellen gleitenden Durchschnitt. Die folgende Formel ist für eine 10-tägige EMA. Ein 10-Perioden-exponentieller gleitender Durchschnitt wendet eine 18,18 Gewichtung auf den jüngsten Preis an. Eine 10-Perioden-EMA kann auch als 18.18 EMA bezeichnet werden. Ein 20-Perioden-EMA wendet einen 9,52 - Wiegen auf den jüngsten Preis an (2 / (201) .0952). Beachten Sie, dass die Gewichtung für den kürzeren Zeitraum mehr ist als die Gewichtung für den längeren Zeitraum. In der Tat, die Gewichtung sinkt um die Hälfte jedes Mal, wenn die gleitende durchschnittliche Periode verdoppelt. Wenn Sie uns einen bestimmten Prozentsatz für eine EMA zuweisen möchten, können Sie diese Formel verwenden, um sie in Zeiträume zu konvertieren, und geben Sie dann diesen Wert als den EMA039s-Parameter ein: Nachstehend ist ein Kalkulationstabellenbeispiel für einen 10-tägigen einfachen gleitenden Durchschnitt und ein 10- Tag exponentiellen gleitenden Durchschnitt für Intel. Einfache gleitende Durchschnitte sind geradlinig und erfordern wenig Erklärung. Der 10-Tage-Durchschnitt bewegt sich einfach, sobald neue Preise verfügbar sind und alte Preise fallen. Der exponentielle gleitende Durchschnitt beginnt mit dem einfachen gleitenden Mittelwert (22.22) bei der ersten Berechnung. Nach der ersten Berechnung übernimmt die Normalformel. Da eine EMA mit einem einfachen gleitenden Durchschnitt beginnt, wird ihr wahrer Wert erst nach 20 oder späteren Perioden realisiert. Mit anderen Worten, der Wert auf der Excel-Tabelle kann sich aufgrund des kurzen Rückblicks von dem Diagrammwert unterscheiden. Diese Kalkulationstabelle geht nur zurück 30 Perioden, was bedeutet, dass der Einfluss der einfachen gleitenden Durchschnitt hatte 20 Perioden zu zerstreuen. StockCharts geht mindestens 250 Perioden (typischerweise viel weiter) für seine Berechnungen zurück, so dass die Effekte des einfachen gleitenden Durchschnitts in der ersten Berechnung vollständig abgebaut sind. Der Lagfaktor Je länger der gleitende Durchschnitt ist, desto stärker ist die Verzögerung. Ein 10-Tage-exponentieller gleitender Durchschnitt wird die Preise sehr eng umringen und sich kurz nach dem Kursumschlag wenden. Kurze gleitende Durchschnitte sind wie Schnellboote - flink und schnell zu ändern. Im Gegensatz dazu enthält ein 100-Tage gleitender Durchschnitt viele vergangene Daten, die ihn verlangsamen. Längere gleitende Durchschnitte sind wie Ozeantanker - lethargisch und langsam zu ändern. Es dauert eine größere und längere Kursbewegung für einen 100-Tage gleitenden Durchschnitt, um Kurs zu ändern. Die Grafik oben zeigt die SampP 500 ETF mit einer 10-tägigen EMA eng ansprechender Preise und einem 100-tägigen SMA-Schleifen höher. Selbst mit dem Januar-Februar-Rückgang hielt die 100-tägige SMA den Kurs und kehrte nicht zurück. Die 50-Tage-SMA passt irgendwo zwischen den 10 und 100 Tage gleitenden Durchschnitten, wenn es um den Verzögerungsfaktor kommt. Simple vs Exponential Moving Averages Obwohl es klare Unterschiede zwischen einfachen gleitenden Durchschnitten und exponentiellen gleitenden Durchschnitten, ist eine nicht unbedingt besser als die anderen. Exponentielle gleitende Mittelwerte haben weniger Verzögerungen und sind daher empfindlicher gegenüber den jüngsten Preisen - und den jüngsten Preisveränderungen. Exponentielle gleitende Mittelwerte drehen sich vor einfachen gleitenden Durchschnitten. Einfache gleitende Durchschnitte stellen dagegen einen wahren Durchschnittspreis für den gesamten Zeitraum dar. Als solches können einfache gleitende Mittel besser geeignet sein, um Unterstützungs - oder Widerstandsniveaus zu identifizieren. Die gleitende Durchschnittspräferenz hängt von den Zielen, dem analytischen Stil und dem Zeithorizont ab. Chartisten sollten mit beiden Arten von gleitenden Durchschnitten sowie verschiedene Zeitrahmen zu experimentieren, um die beste Passform zu finden. Die nachstehende Grafik zeigt IBM mit der 50-Tage-SMA in Rot und der 50-Tage-EMA in Grün. Beide gipfelten Ende Januar, aber der Rückgang in der EMA war schärfer als der Rückgang der SMA. Die EMA erschien Mitte Februar, aber die SMA setzte weiter unten bis Ende März. Beachten Sie, dass die SMA über einen Monat nach der EMA. Längen und Zeitrahmen Die Länge des gleitenden Mittelwerts hängt von den analytischen Zielen ab. Kurze gleitende Durchschnitte (5-20 Perioden) eignen sich am besten für kurzfristige Trends und den Handel. Chartisten, die sich für mittelfristige Trends interessieren, würden sich für längere bewegte Durchschnitte entscheiden, die 20-60 Perioden verlängern könnten. Langfristige Anleger bevorzugen gleitende Durchschnitte mit 100 oder mehr Perioden. Einige gleitende durchschnittliche Längen sind beliebter als andere. Die 200-Tage gleitenden Durchschnitt ist vielleicht die beliebteste. Wegen ihrer Länge ist dies eindeutig ein langfristiger gleitender Durchschnitt. Als nächstes ist der 50-Tage gleitende Durchschnitt für den mittelfristigen Trend ziemlich populär. Viele Chartisten nutzen die 50-Tage-und 200-Tage gleitende Durchschnitte zusammen. Kurzfristig war ein 10 Tage gleitender Durchschnitt in der Vergangenheit ziemlich populär, weil er leicht zu berechnen war. Man hat einfach die Zahlen addiert und den Dezimalpunkt verschoben. Trendidentifikation Die gleichen Signale können mit einfachen oder exponentiellen gleitenden Mittelwerten erzeugt werden. Wie oben erwähnt, hängt die Präferenz von jedem Individuum ab. Die folgenden Beispiele werden sowohl einfache als auch exponentielle gleitende Mittelwerte verwenden. Der Begriff gleitender Durchschnitt gilt für einfache und exponentielle gleitende Mittelwerte. Die Richtung des gleitenden Durchschnitts vermittelt wichtige Informationen über die Preise. Ein steigender Durchschnitt zeigt, dass die Preise im Allgemeinen steigen. Ein sinkender Durchschnittswert zeigt an, dass die Preise im Durchschnitt sinken. Ein steigender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Aufwärtstrend wider. Ein sinkender langfristiger gleitender Durchschnitt spiegelt einen langfristigen Abwärtstrend wider. Das Diagramm oben zeigt 3M (MMM) mit einem 150-Tage-exponentiellen gleitenden Durchschnitt. Dieses Beispiel zeigt, wie gut bewegte Durchschnitte arbeiten, wenn der Trend stark ist. Die 150-Tage-EMA sank im November 2007 und wieder im Januar 2008. Beachten Sie, dass es einen Rückgang von 15 nahm, um die Richtung dieses gleitenden Durchschnitts umzukehren. Diese nachlaufenden Indikatoren identifizieren Trendumkehrungen, wie sie auftreten (am besten) oder nach deren Eintritt (im schlimmsten Fall). MMM setzte unten in März 2009 und dann stieg 40-50. Beachten Sie, dass die 150-Tage-EMA nicht auftauchte, bis nach diesem Anstieg. Sobald es aber tat, setzte MMM die folgenden 12 Monate höher fort. Moving-Durchschnitte arbeiten brillant in starken Trends. Doppelte Frequenzweichen Zwei gleitende Mittelwerte können zusammen verwendet werden, um Frequenzweiche zu erzeugen. In der technischen Analyse der Finanzmärkte. John Murphy nennt dies die doppelte Crossover-Methode. Doppelte Crossover beinhalten einen relativ kurzen gleitenden Durchschnitt und einen relativ langen gleitenden Durchschnitt. Wie bei allen gleitenden Durchschnitten definiert die allgemeine Länge des gleitenden Durchschnitts den Zeitrahmen für das System. Ein System, das eine 5-Tage-EMA und eine 35-Tage-EMA verwendet, wäre kurzfristig. Ein System, das eine 50-tägige SMA - und 200-Tage-SMA verwendet, wäre mittelfristig, vielleicht sogar langfristig. Eine bullische Überkreuzung tritt auf, wenn der kürzere gleitende Durchschnitt über dem längeren gleitenden Durchschnitt kreuzt. Dies wird auch als goldenes Kreuz bezeichnet. Eine bärische Überkreuzung tritt ein, wenn der kürzere gleitende Durchschnitt unter dem längeren gleitenden Durchschnitt liegt. Dies wird als ein totes Kreuz bekannt. Gleitende Mittelübergänge erzeugen relativ späte Signale. Schließlich setzt das System zwei hintere Indikatoren ein. Je länger die gleitenden Durchschnittsperioden, desto größer die Verzögerung in den Signalen. Diese Signale funktionieren gut, wenn eine gute Tendenz gilt. Allerdings wird ein gleitender Durchschnitt Crossover-System produzieren viele whipsaws in Abwesenheit einer starken Tendenz. Es gibt auch eine Dreifach-Crossover-Methode, die drei gleitende Durchschnitte beinhaltet. Wieder wird ein Signal erzeugt, wenn der kürzeste gleitende Durchschnitt die beiden längeren Mittelwerte durchläuft. Ein einfaches Triple-Crossover-System könnte 5-Tage-, 10-Tage - und 20-Tage-Bewegungsdurchschnitte beinhalten. Das Diagramm oben zeigt Home Depot (HD) mit einer 10-tägigen EMA (grüne gepunktete Linie) und 50-Tage-EMA (rote Linie). Die schwarze Linie ist die tägliche Schließung. Mit einem gleitenden Durchschnitt Crossover hätte dazu geführt, dass drei Peitschen vor dem Fang eines guten Handels. Die 10-tägige EMA brach unterhalb der 50-Tage-EMA Ende Oktober (1), aber dies dauerte nicht lange, wie die 10-Tage zog zurück oben Mitte November (2). Dieses Kreuz dauerte länger, aber die nächste bärige Crossover im Januar (3) ereignete sich gegen Ende November Preisniveaus, was zu einer weiteren Peitsche führte. Dieses bärische Kreuz dauerte nicht lange, als die 10-Tage-EMA über die 50-Tage ein paar Tage später zurückging (4). Nach drei schlechten Signalen, schien das vierte Signal eine starke Bewegung als die Aktie vorrückte über 20. Es gibt zwei Takeaways hier. Erstens, Crossovers sind anfällig für whipsaw. Ein Preis oder Zeitfilter kann angewendet werden, um zu helfen, whipsaws zu verhindern. Händler könnten verlangen, dass die Crossover 3 Tage dauern, bevor sie handeln oder verlangen, dass die 10-Tage-EMA zu bewegen, über / unterhalb der 50-Tage-EMA um einen bestimmten Betrag vor handeln. Zweitens kann MACD verwendet werden, um diese Frequenzweichen zu identifizieren und zu quantifizieren. MACD (10,50,1) zeigt eine Linie, die die Differenz zwischen den beiden exponentiellen gleitenden Mittelwerten darstellt. MACD wird positiv während eines goldenen Kreuzes und negativ während eines toten Kreuzes. Der Prozentsatz-Oszillator (PPO) kann auf die gleiche Weise verwendet werden, um Prozentunterschiede anzuzeigen. Beachten Sie, dass MACD und das PPO auf exponentiellen gleitenden Durchschnitten basieren und nicht mit einfachen gleitenden Durchschnitten zusammenpassen. Diese Grafik zeigt Oracle (ORCL) mit dem 50-Tage EMA, 200-Tage EMA und MACD (50.200,1). Es gab vier gleitende durchschnittliche Kreuzungen über einen Zeitraum von 2 1/2 Jahren. Die ersten drei führten zu Peitschen oder schlechten Trades. Ein anhaltender Trend begann mit der vierten Crossover als ORCL bis Mitte der 20er Jahre. Erneut bewegen sich die durchschnittlichen Crossover-Effekte groß, wenn der Trend stark ist, erzeugen aber Verluste in Abwesenheit eines Trends. Preis-Crossover Moving-Durchschnitte können auch verwendet werden, um Signale mit einfachen Preis-Crossover zu generieren. Ein bullisches Signal wird erzeugt, wenn die Preise über dem gleitenden Durchschnitt liegen. Ein bäres Signal wird erzeugt, wenn die Preise unter dem gleitenden Durchschnitt liegen. Preis-Crossover können kombiniert werden, um innerhalb der größeren Trend Handel. Der längere gleitende Durchschnitt setzt den Ton für den größeren Trend und der kürzere gleitende Durchschnitt wird verwendet, um die Signale zu erzeugen. Man würde bullish Preiskreuze nur dann suchen, wenn die Preise schon über dem längeren gleitenden Durchschnitt liegen. Dies würde den Handel im Einklang mit dem größeren Trend. Wenn zum Beispiel der Kurs über dem gleitenden 200-Tage-Durchschnitt liegt, würden sich die Chartisten nur auf Signale konzentrieren, wenn der Kurs über dem 50-Tage-Gleitender Durchschnitt liegt. Offensichtlich würde ein Schritt unterhalb der 50-Tage gleitenden Durchschnitt ein solches Signal vorausgehen, aber solche bearish Kreuze würden ignoriert, weil der größere Trend ist. Ein bearish Kreuz würde einfach vorschlagen, ein Pullback in einem größeren Aufwärtstrend. Ein Cross-Back über dem 50-Tage-Gleitender Durchschnitt würde einen Preisanstieg und eine Fortsetzung des größeren Aufwärtstrends signalisieren. Die nächste Tabelle zeigt Emerson Electric (EMR) mit dem 50-Tage EMA und 200-Tage EMA. Die Aktie bewegte sich über und hielt über dem 200-Tage gleitenden Durchschnitt im August. Es gab Dips unterhalb der 50-Tage-EMA Anfang November und wieder Anfang Februar. Die Preise schnell zurück über die 50-Tage-EMA zu bullish Signale (grüne Pfeile) in Harmonie mit dem größeren Aufwärtstrend. Im Indikatorfenster wird MACD (1,50,1) angezeigt, um Preiskreuze über oder unter dem 50-Tage-EMA zu bestätigen. Die 1-tägige EMA entspricht dem Schlusskurs. MACD (1,50,1) ist positiv, wenn das Schließen oberhalb der 50-Tage-EMA und negativ ist, wenn das Schließen unterhalb der 50-Tage-EMA liegt. Unterstützung und Widerstand Der Gleitende Durchschnitt kann auch als Unterstützung in einem Aufwärtstrend und Widerstand in einem Abwärtstrend dienen. Ein kurzfristiger Aufwärtstrend könnte Unterstützung nahe dem 20-tägigen einfachen gleitenden Durchschnitt finden, der auch in Bollinger-Bändern verwendet wird. Ein langfristiger Aufwärtstrend könnte Unterstützung nahe dem 200-tägigen einfachen gleitenden Durchschnitt finden, der der populärste langfristige bewegliche Durchschnitt ist. Wenn Tatsache, die 200-Tage gleitenden Durchschnitt bieten kann Unterstützung oder Widerstand, nur weil es so weit verbreitet ist. Es ist fast wie eine sich selbst erfüllende Prophezeiung. Die Grafik oben zeigt die NY Composite mit dem 200-Tage einfachen gleitenden Durchschnitt von Mitte 2004 bis Ende 2008. Die 200-Tage-Support zur Verfügung gestellt, mehrmals während des Vorhabens. Sobald der Trend mit einem Doppel-Top-Support-Pause umgekehrt, der 200-Tage gleitenden Durchschnitt als Widerstand um 9500 gehandelt. Erwarten Sie nicht genaue Unterstützung und Widerstand Ebenen von gleitenden Durchschnitten, vor allem längeren gleitenden Durchschnitten. Märkte werden durch Emotionen gefahren, wodurch sie anfällig für Überschreitungen sind. Statt genauer Ebenen können gleitende Mittelwerte verwendet werden, um Unterstützungs - oder Widerstandszonen zu identifizieren. Schlussfolgerungen Die Vorteile der Verwendung von bewegten Durchschnitten müssen gegen die Nachteile gewogen werden. Moving-Durchschnitte sind Trend nach, oder nacheilende, Indikatoren, die immer einen Schritt hinter sich. Dies ist nicht unbedingt eine schlechte Sache. Immerhin ist der Trend ist dein Freund und es ist am besten, in die Richtung des Trends Handel. Die gleitenden Durchschnitte gewährleisten, dass ein Händler dem aktuellen Trend entspricht. Auch wenn der Trend ist dein Freund, verbringen die Wertpapiere viel Zeit in Handelsspannen, die gleitende Durchschnitte ineffektiv machen. Einmal in einem Trend, bewegte Durchschnitte halten Sie in, sondern geben auch späte Signale. Don039t erwarten, an der Spitze zu verkaufen und kaufen Sie am unteren Rand mit gleitenden Durchschnitten. Wie bei den meisten technischen Analysetools sollten die gleitenden Mittelwerte nicht allein verwendet werden, sondern in Verbindung mit anderen komplementären Tools. Chartisten können gleitende Durchschnitte verwenden, um den Gesamttrend zu definieren und dann RSI zu verwenden, um überkaufte oder überverkaufte Niveaus zu definieren. Hinzufügen von Bewegungsdurchschnitten zu StockCharts Diagrammen Gleitende Durchschnitte sind als Preisüberlagerungsfunktion auf der SharpCharts-Workbench verfügbar. Mit dem Dropdown-Menü Overlays können Benutzer entweder einen einfachen gleitenden Durchschnitt oder einen exponentiellen gleitenden Durchschnitt auswählen. Der erste Parameter wird verwendet, um die Anzahl der Zeitperioden einzustellen. Ein optionaler Parameter kann hinzugefügt werden, um festzulegen, welches Preisfeld in den Berechnungen verwendet werden soll - O für die Open, H für High, L für Low und C für Close. Ein Komma wird verwendet, um Parameter zu trennen. Ein weiterer optionaler Parameter kann hinzugefügt werden, um die gleitenden Mittelwerte nach links (vorbei) oder nach rechts (zukünftig) zu verschieben. Eine negative Zahl (-10) würde den gleitenden Durchschnitt auf die linken 10 Perioden verschieben. Eine positive Zahl (10) würde den gleitenden Durchschnitt auf die rechten 10 Perioden verschieben. Mehrere gleitende Durchschnitte können dem Preisplot überlagert werden, indem einfach eine weitere Überlagerungslinie zur Werkbank hinzugefügt wird. StockCharts-Mitglieder können die Farben und den Stil ändern, um zwischen mehreren gleitenden Durchschnitten zu unterscheiden. Nachdem Sie eine Anzeige ausgewählt haben, öffnen Sie die erweiterten Optionen, indem Sie auf das kleine grüne Dreieck klicken. Erweiterte Optionen können auch verwendet werden, um eine gleitende mittlere Überlagerung zu anderen technischen Indikatoren wie RSI, CCI und Volumen hinzuzufügen. Klicken Sie hier für ein Live-Diagramm mit mehreren verschiedenen gleitenden Durchschnitten. Verwenden von Moving Averages mit StockCharts-Scans Hier finden Sie einige Beispielscans, die die StockCharts-Mitglieder verwenden können, um verschiedene gleitende durchschnittliche Situationen zu scannen: Bullish Moving Average Cross: Diese Scans suchen nach Aktien mit einem steigenden 150-Tage-Durchschnitt und einem bullish Kreuz der 5 Tag EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt steigt, solange er über seinem Niveau vor fünf Tagen handelt. Ein bullish Kreuz tritt auf, wenn die 5-Tage-EMA bewegt sich über dem 35-Tage-EMA auf überdurchschnittlichen Volumen. Bearish Moving Average Cross: Diese Scans sucht nach Aktien mit einem fallenden 150-Tage einfachen gleitenden Durchschnitt und einem bärischen Kreuz der 5-Tage EMA und 35-Tage EMA. Der 150-Tage gleitende Durchschnitt fällt, solange er unter seinem Niveau vor fünf Tagen handelt. Ein bäriges Kreuz tritt auf, wenn die 5-Tage-EMA unterhalb der 35-Tage-EMA auf überdurchschnittlichem Volumen bewegt. Weitere Studie John Murphy039s Buch hat ein Kapitel gewidmet gleitende Durchschnitte und ihre verschiedenen Verwendungen. Murphy deckt die Vor-und Nachteile der gleitenden Durchschnitte. Darüber hinaus zeigt Murphy, wie bewegte Durchschnitte mit Bollinger Bands und kanalbasierten Handelssystemen funktionieren. Technische Analyse der Finanzmärkte John MurphyMoving Durchschnitt - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen . Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Der Abwärtsmomentum wird mit einem bärischen Crossover bestätigt, der auftritt, wenn ein kurzfristiges MA unter ein längerfristiges MA geht. In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert . Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein zufälliges Rauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 hinzugefügt wird. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.
No comments:
Post a Comment